Critical homogenization of Lévy process driven SDEs in random medium
نویسندگان
چکیده
We are concerned with homogenization of stochastic differential equations (SDE) with stationary coefficients driven by Poisson random measures and Brownian motions in the critical case, that is when the limiting equation admits both a Brownian part as well as a pure jump part. We state an annealed convergence theorem. This problem is deeply connected with homogenization of integral partial differential equations.
منابع مشابه
SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations
It is known that if a stochastic process is a solution to a classical Itô stochastic differential equation (SDE), then its transition probabilities satisfy in the weak sense the associated Cauchy problem for the forward Kolmogorov equation. The forward Kolmogorov equation is a parabolic partial differential equation with coefficients determined by the corresponding SDE. Stochastic processes whi...
متن کاملAsymptotic Stability of Stochastic Differential Equations Driven by Lévy Noise
Using key tools such as Itô’s formula for general semimartingales, Kunita’s moment estimates for Lévy-type stochastic integrals, and the exponential martingale inequality, we find conditions under which the solutions to the stochastic differential equations (SDEs) driven by Lévy noise are stable in probability, almost surely and moment exponentially stable. Keywords; stochastic differential equ...
متن کاملFractional Lévy driven Ornstein-Uhlenbeck processes and stochastic differential equations
Using Riemann-Stieltjes methods for integrators of bounded p-variation we define a pathwise integral driven by a fractional Lévy process (FLP). To explicitly solve general fractional stochastic differential equations (SDEs) we introduce an Ornstein-Uhlenbeck model by a stochastic integral representation, where the driving stochastic process is an FLP. To achieve the convergence of improper inte...
متن کاملReflected generalized backward doubly SDEs driven by Lévy processes and Applications
In this paper, a class of reflected generalized backward doubly stochastic differential equations (reflected GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to ...
متن کاملRegularity of density for SDEs driven by degenerate Lévy noises*
By using Bismut’s approach to the Malliavin calculus with jumps, we study the regularity of the distributional density for SDEs driven by degenerate additive Lévy noises. Under full Hörmander’s conditions, we prove the existence of distributional density and the weak continuity in the first variable of the distributional density. Moreover, under a uniform first order Lie’s bracket condition, we...
متن کامل